Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT WASP-12 b is an ultra-hot Jupiter of special interest for atmospheric studies since it is on an inspiraling orbit in an extreme environment of intense radiation and circumstellar gas. Previously claimed detections of active mass-loss from this planet are controversial across the literature. To address this controversy, we obtain two new transit observations of WASP-12 b with the optical high-resolution PEPSI spectrograph on the Large Binocular Telescope. Contrary to previous work, we do not observe planetary H$$\alpha$$ absorption and rule out the amplitude of previously reported detections. Our non-detection may be limited by the sensitivity of our data or could indicate weaker mass-loss than suggested by previous studies. We conduct injection-recovery experiments to place constraints on the radial extent of WASP-12 b’s escaping atmosphere as probed by Balmer lines, but find that our data do not have the sensitivity to probe down to the planet’s Roche lobe. Using physically motivated models of atmospheric escape, we explore upper limit constraints on the planet’s mass-loss rate and deem the data quality in the wavelength regime of Balmer lines insufficient to determine a physically meaningful constraint. We also conduct a spectral survey of other optical absorbers to trace atmospheric circulation but detect no additional absorption. We conclude that previous claims of H$$\alpha$$ absorption from the atmosphere of WASP-12 b should be reevaluated. Given the anticipated line strength of Balmer/optical features, observing the atmosphere of this faint target will require stacking more observations even with the largest telescope facilities available.more » « less
-
ABSTRACT The time variability and spectra of directly imaged companions provide insight into their physical properties and atmospheric dynamics. We present follow-up R ∼ 40 spectrophotometric monitoring of red companion HD 1160 B at 2.8–4.2 μm using the double-grating 360° vector Apodizing Phase Plate (dgvAPP360) coronagraph and ALES integral field spectrograph on the Large Binocular Telescope Interferometer. We use the recently developed technique of gvAPP-enabled differential spectrophotometry to produce differential light curves for HD 1160 B. We reproduce the previously reported ∼3.2 h periodic variability in archival data, but detect no periodic variability in new observations taken the following night with a similar 3.5 per cent level precision, suggesting rapid evolution in the variability of HD 1160 B. We also extract complementary spectra of HD 1160 B for each night. The two are mostly consistent, but the companion appears fainter on the second night between 3.0–3.2 μm. Fitting models to these spectra produces different values for physical properties depending on the night considered. We find an effective temperature Teff = $$2794^{+115}_{-133}$$ K on the first night, consistent with the literature, but a cooler Teff = $$2279^{+79}_{-157}$$ K on the next. We estimate the mass of HD 1160 B to be 16–81 MJup, depending on its age. We also present R = 50 000 high-resolution optical spectroscopy of host star HD 1160 A obtained simultaneously with the PEPSI spectrograph. We reclassify its spectral type to A1 IV-V and measure its projected rotational velocity $$\upsilon \sin i$$ = $$96^{+6}_{-4}$$ km s−1. We thus highlight that gvAPP-enabled differential spectrophotometry can achieve repeatable few per cent level precision and does not yet reach a systematic noise floor, suggesting greater precision is achievable with additional data or advanced detrending techniques.more » « less
-
Abstract The bright starλSer hosts a hot Neptune with a minimum mass of 13.6M⊕and a 15.5 day orbit. It also appears to be a solar analog, with a mean rotation period of 25.8 days and surface differential rotation very similar to the Sun. We aim to characterize the fundamental properties of this system and constrain the evolutionary pathway that led to its present configuration. We detect solar-like oscillations in time series photometry from the Transiting Exoplanet Survey Satellite, and we derive precise asteroseismic properties from detailed modeling. We obtain new spectropolarimetric data, and we use them to reconstruct the large-scale magnetic field morphology. We reanalyze the complete time series of chromospheric activity measurements from the Mount Wilson Observatory, and we present new X-ray and ultraviolet observations from the Chandra and Hubble space telescopes. Finally, we use the updated observational constraints to assess the rotational history of the star and estimate the wind braking torque. We conclude that the remaining uncertainty on the stellar age currently prevents an unambiguous interpretation of the properties ofλSer, and that the rate of angular momentum loss appears to be higher than for other stars with a similar Rossby number. Future asteroseismic observations may help to improve the precision of the stellar age.more » « less
An official website of the United States government
